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Abstract

Word Sense Disambiguation (WSD) is the task of associat-
ing a word in context with one of its meanings. While many
works in the past have focused on raising the state of the
art, none has even come close to achieving an F-score in the
80% ballpark when using WordNet as its sense inventory.
We contend that one of the main reasons for this failure is
the excessively fine granularity of this inventory, resulting in
senses that are hard to differentiate between, even for an ex-
perienced human annotator. In this paper we cope with this
long-standing problem by introducing Coarse Sense Inven-
tory (CSI), obtained by linking WordNet concepts to a new
set of 45 labels. The results show that the coarse granular-
ity of CSI leads a WSD model to achieve 85.9% F1, while
maintaining a high expressive power. Our set of labels also
exhibits ease of use in tagging and a descriptiveness that other
coarse inventories lack, as demonstrated in two annotation
tasks which we performed. Moreover, a few-shot evaluation
proves that the class-based nature of CSI allows the model to
generalise over unseen or under-represented words.

1 Introduction
Word Sense Disambiguation (WSD) is the task of assign-
ing the correct meaning from among a finite set of possible
choices to a word in a context (Navigli 2009). It is a key task
in Natural Language Processing (Navigli 2018), providing
semantic information that is potentially beneficial for down-
stream applications, such as information extraction (Delli
Bovi, Espinosa Anke, and Navigli 2015) and machine trans-
lation (Pu et al. 2018). While much effort has been devoted
to building new algorithms or data (Pasini and Navigli 2018;
Scarlini, Pasini, and Navigli 2019) for this task, state-of-
the-art systems have yet to break the 80% accuracy ceil-
ing on standard WSD benchmark datasets (Raganato, Delli
Bovi, and Navigli 2017; Bevilacqua and Navigli 2019; Vial,
Lecouteux, and Schwab 2019; Scarlini, Pasini, and Navigli
2020), showing that the WSD task is far from being solved.
Following the literature in the field (Hovy et al. 2006;
Palmer, Dang, and Fellbaum 2007; Navigli, Litkowski, and
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Hargraves 2007), we argue that the reason for this unsat-
isfactory performance does not lie solely in the complex-
ity of the task but also in the fine granularity of the sense
inventory adopted, i.e., WordNet (Fellbaum 1998). For ex-
ample the noun street has separate WordNet senses for the
‘thoroughfare (usually including sidewalks)’ and ‘the part
of a thoroughfare between the sidewalks’. Such fine-grained
distinctions introduce noise and sparsity for machine learn-
ing algorithms in a task where reliable data is very costly
to produce. Moreover, the inter-annotator agreement with
WordNet ranges from 0.6 to 0.8 (Navigli 2009), making
it clear that, unless super-human performance is expected,
WSD systems will not exceed this ceiling. To overcome
these issues, in this paper we present Coarse Sense Inventory
(CSI), a new organization of concepts based on a large-scale
mapping of WordNet synsets to domain-based semantic la-
bels. CSI labels are tailored to WSD, with each label shared
across different words and part-of-speech (POS) tags. The
inventory has been developed starting from the categories
of a general domain thesaurus, i.e., Roget’s (2011), which
have been clustered into coarser labels, leading to an inven-
tory whose high-level semantics is domain-based (describ-
ing what each label is about) rather than hypernymy-based
(what the label is a kind of ). The experimental results pro-
vide evidence that CSI is better suited for WSD than other
existing competitors; moreover, CSI leads a supervised neu-
ral system to reach an F1 of almost 86% overall and helps the
model to generalise over unseen or under-represented words.

In this work, we provide four main contributions:

1. We introduce CSI, a new coarse-grained sense inventory
where semantic labels are shared across the lexicon.

2. Our new sense inventory achieves better qualitative re-
sults on two manual annotation tasks than its alternatives:
our labels enable a higher inter-annotator agreement and
are more descriptive than those of the competitors.

3. CSI outperforms all the compared coarse-grained sense
inventories on all-words WSD, attaining a better trade-off
between performance and expressiveness.

4. CSI paves the way to few-shot learning in WSD, as it
reaches better performances than its alternative invento-
ries on unseen and under-represented words.



2 Related Work
A sense inventory enumerates the possible meanings that
content words (nouns, verbs, adverbs, adjectives) may as-
sume. Even though enumerative representations of lexical
semantics have been the object of some criticism (Kilgar-
riff 1997), the enumerative lexicon is still the most popu-
lar approach in WSD as it defines a possible finite ground
truth for word meanings. Indeed, WordNet is the de facto
standard sense inventory for WSD, with it being the largest
manually-crafted and freely available inventory, grouping
155287 different lemmas (word form-POS pairs) in 117659
concepts called synsets, i.e., sets of synonyms (statistics for
version 3.0). The main criticism that is made against Word-
Net is that its fine granularity and subtle distinctions between
nearly identical senses make it hard to select the most suit-
able meaning of a given word, even for humans (Edmonds
and Kilgarriff 2002). To overcome this problem, different
sense inventories with coarser granularity have been devel-
oped. Following Izquierdo, Suarez, and Rigau (2015), we
group inventories into two categories: i) word-based and ii)
class-based. We review these two groups in what follows.

Word-based Many works in the past have proposed dif-
ferent approaches for solving the fine-granularity problem
with coarser sense inventories created by clustering Word-
Net senses that are associated with the same lemma (Palmer,
Babko-Malaya, and Dang 2004; Palmer, Dang, and Fell-
baum 2007). Hovy et al. (2006) introduced the OntoNotes
project, whose objectives included the release of a manually-
built sense inventory. The resource was obtained by itera-
tively merging senses until 90% inter-annotator agreement
was reached, thus encouraging annotators to choose coarser
senses to meet the agreement goal. Differently, but pursu-
ing the same objective, the work of Navigli (2006) coars-
ened the WordNet inventory by clustering and mapping its
word senses to the Oxford Dictionary of English (ODE).
This work was later used as the starting point for introduc-
ing the task of coarse-grained all-words WSD in the context
of SemEval-07 (Navigli, Litkowski, and Hargraves 2007).
With the same purpose of reducing the granularity of senses,
Snow et al. (2007) proposed a supervised approach to pre-
dict whether two senses should be merged or not.

Class-based One of the drawbacks of word-based ap-
proaches is that their sense labels are still tied to words,
thus leaving unsolved the problem of rare senses which
have none, or only few, occurrences in an annotated cor-
pus. Class-based approaches, instead, cope with this issue
by providing labels that are shared among different words,
enabling a more efficient usage of annotated data, and miti-
gating the problem of the long tail of infrequent word senses.

One of the earliest approaches treats WordNet’s lexicog-
rapher files as coarse classes, which we refer to as Super-
Senses: each class includes synsets with the same part of
speech and a broad semantic type, like VERB.PERCEPTION.
While each WordNet synset is associated with one label
from a set of 45 available, the 4 labels used for adverbs and

adjectives are not semantically meaningful, making the re-
source of limited usefulness for all-words WSD. For exam-
ple, all the senses of the adjective bright are classified as
ADJ.ALL, making it impossible to distinguish the intelligent
meaning of the word from the light one. Izquierdo, Suárez,
and Rigau (2007), instead, exploited WordNet relations to
automatically extract a set of fundamental senses, called Ba-
sic Level Concepts, to which all the other senses are mapped.
Similarly, Vial, Lecouteux, and Schwab (2019) leveraged
hypernymy to reduce the WordNet granularity, releasing a
39K-label inventory used for fine-grained WSD. Another
WordNet-based resource is WordNet Domains (Magnini and
Cavaglià 2000), a mapping from WordNet synsets to a set
of 200 labels loosely following the Dewey Decimal Clas-
sification system (Dewey 1876). The authors took a semi-
supervised approach where they manually annotated a mod-
erate number of seed synsets and then propagated the la-
bels by exploiting the WordNet structure. Along the lines of
WordNet Domains, Camacho-Collados and Navigli (2017)
introduced BabelDomains, a set of 42 labels grouping in
coarser-grained classes the nominal synsets of BabelNet
(Navigli and Ponzetto 2012), a multilingual knowledge base
comprising WordNet, Wikipedia and other resources. Babel-
Domains employs top-level categories from Wikipedia fea-
tured articles, thus making it able to cover a comprehensive
set of knowledge domains.

Differently from the aforementioned class-based invento-
ries, CSI has been manually created from scratch. Moreover,
in contrast to BabelDomains – which covers only nouns –
and SuperSenses and Basic Level Concepts – in which only
nouns and verbs are meaningfully clustered – CSI covers
all the content-word POS tags. Furthermore, our coarse in-
ventory encompasses semantic areas that are excluded from
other existing resources, inter alia, the five senses of percep-
tion and the areas of routines and daily activities.

3 CSI: A Coarse Sense Inventory
In this Section we present our novel class-based Coarse
Sense Inventory (CSI). The main objective of our approach
is to build a resource that avoids sense distinctions that are
too fine-grained for WSD, while maintaining a granularity
that is still meaningful for the task. Our method (see Fig-
ure 1) consists of two steps: i) tagset definition, in which,
by clustering Roget’s categories, we define a new coarse-
grained sense inventory, and ii) synset mapping, where we
map WordNet synsets to one or more CSI labels.

Tagset Definition The first step aims at building a set of
coarse labels which covers the largest possible portion of
the semantic space. For this purpose we exploit Roget’s the-
saurus, a widely-used resource in NLP which provides a
categorization for the lexicon of the English language. The
thesaurus contains 1075 categories, grouped into 15 broader
classes, none of which offers the level of granularity we need
for the purpose of class-based WSD. In fact, categories un-
der the same class may be either too similar, such as tribunal,
jury, lawyer, or too different, such as lawyer and learning.
At the same time, the 15 Roget’s classes are not specific



Figure 1: An excerpt of the mapping between Roget’s cate-
gories, CSI labels and WordNet synsets.

enough to be used as labels, since they describe broad do-
mains such as Values and the ideals. For this reason we
asked three expert linguists to group the Roget’s categories
into clusters which could serve as labels for our sense inven-
tory. For each of the Roget’s classes the annotators identified
those categories representing semantically unrelated fields
that could potentially appear in different contexts (e.g., hair,
sleep and color in the class the body and the senses). When
this was the case, they could either create one or more new
clusters, or assign such categories to an existing cluster. Fi-
nally, once the taggers converged on a common set of clus-
ters, they named each of them by considering the shared se-
mantics of the categories and the possible application con-
text they could appear in.

For example, the jurisdiction, tribunal, judge, jury and
lawyer categories were merged into a single cluster named
LAW&CRIME, while the fragrance and odor categories were
grouped together under the OLFACTORY label. Moreover,
we also added the semantically-empty label named GEN-
ERAL to our inventory to cover the 135 categories that
could not be included in any cluster. As a result, CSI
covers all the semantic areas expressed by the 1075 Ro-
get’s categories. Note that some categories can belong to
more than one cluster, leading to partitions of the se-
mantic space that are not disjoint. For example, the cate-
gory religious buildings belongs both to the cluster named
ART,ARCHITECTURE&ARCHAEOLOGY and to the cluster
RELIGION,MYSTICISM&MYTHOLOGY.

Synset Mapping The second step aims at mapping the
WordNet synsets to one or more CSI labels. To this end,
the annotators iterated over each WordNet synset, associat-
ing it with one or more CSI labels, exploiting as context its
gloss and its occurrences in the sentences of SemCor (Miller
et al. 1993), i.e., a manually-annotated corpus. The annota-
tors mapped a sample of WordNet composed of the most fre-
quent synsets occurring in SemCor, so as to guarantee a large
coverage of its instances. The outcome of this step is a map-
ping of 8217 synsets to one or more coarse labels, covering
78% of the annotated instances in SemCor. For example, the
synsets {plebeian, pleb} and {Marxism} are associated with
the CSI label POLITICS,GOVERNMENT&NOBILITY, while
{treaty, pact, accord} is labelled with both LAW&CRIME
and POLITICS,GOVERNMENT&NOBILITY.

To further increase CSI coverage, we mapped each of

the labels of BabelDomains (Camacho-Collados and Nav-
igli 2017) to one or more CSI tags. To ensure the consis-
tency of the labels, an annotator manually validated all the
CSI labels that did not have a one-to-one correspondence
with BabelDomains tags. This mapping guarantees an addi-
tional coverage of 78K WordNet synsets. As a result, a total
of 83K synsets were annotated with at least one coarse label,
encompassing all open-class parts of speech.

4 Experiments
We now present a set of experiments aimed at assessing the
quality of CSI under different perspectives: i) we designed
two annotation tasks to evaluate the reliability (Section 4.1)
and the descriptiveness (Section 4.2) of the labels in each
coarse-grained inventory, ii) we exploited the WSD task to
evaluate and compare CSI with other class-based invento-
ries, and iii) we tested CSI’s ability to enable zero- and few-
shot learning, also in comparison with its alternatives.

Competitors As competitors of CSI, we considered a
word-based and fine-grained inventory, i.e., WordNet, and
three class-based and coarse-grained inventories, i.e., Babel-
Domains (BD), WordNet Domains (WND) and SuperSenses
(SuS). As regards the class-based ones, we recall from Sec-
tion 2 that they provide a mapping from the WordNet synsets
to one or more of their coarse labels. Among our compar-
isons we did not calculate the improvements brought by CSI
with respect to a random clustering, as proposed by Snow
et al. (2007), since we were mainly interested in evaluating
the use of our labels in coarse-grained WSD rather than the
clustering itself, and because the proposed metric can only
be applied to disjoint clusters, which was not our case.

4.1 Label Selection
To test whether the use of CSI can result in more reli-
able annotations, we designed a task where three expert
linguists - not involved in the creation of the mapping -
were asked to annotate 200 target words according to the
inventories under comparison. For each coarse inventory
we defined the set of possible labels for a given word as
the union of the labels associated with the word’s synsets.
For WordNet, we directly considered the glosses of the
word’s meanings as labels, instead. Then, for each tar-
get word, we provided the annotators with a context sen-
tence from SemCor, together with the set of possible la-
bels for that word in each inventory. For example, we pre-
sented the following sentence to the annotators: “Madden
settled back to read the will” and they had to choose among
the CSI, WordNet, SuperSenses and WordNet Domains
senses of settled, that are, respectively, {SPACE&TOUCH,
BUSINESS,ECONOMICS&FINANCE, LAW&CRIME}, {settle
into a position;bring to an end; . . . ; end a legal dispute},
{VERB.CHANGE, VERB.COGNITION}, and {POLITICS,
FACTOTUM}.

Measures To evaluate the inter-annotator agreement we
calculated the Kraemer’s κ coefficient (Kraemer 1980). We
preferred it to the better known Cohen’s κ (Cohen 1960), of



which the former is an extension, since it allows the annota-
tors to provide more than one answer for an item. To com-
pute the Kraemer’s κ we first represent the response Aj

i of
each annotator j for an item i as a vector rji ∈ R|L|, where L
is the set of possible labels. Within rji , each dimension cor-
responds to one of the labels l1, . . . , l|L| ∈ L and can take
one of the following two values: the mean of 1, . . . , |Aj

i | for
dimensions corresponding to labels ∈ Aj

i and the mean of
|Aj

i |+ 1, . . . , |L| for the others. Formally:

rji [k] =


1

|Aj
i |

|Aj
i |∑

n=1
n if lk ∈ Aj

i

1

|L|−|Aj
i |

|L|∑
n=|Aj

i |+1

n otherwise

where k ∈ {1, . . . , |L|}. For example, supposing annotator
2 gave the CSI response labels A2

i = {BIOLOGY, CHEM-
ISTRY&MINERALOGY} for item i, we calculate a value of
1
2

∑2
n=1 n = 1.5 for the labels chosen by the annotator and

a value of 1
45

∑45
n=3 n = 23 for all the others1. Assuming

that BIOLOGY and CHEMISTRY&MINERALOGY correspond
to the indices 2 and 4, we build the following rank vector
r2i = (23, 1.5, 23, 1.5, . . . , 23). Once each annotation Aj

i

has its associated rank vector rji , we can proceed to com-
pute their correlation. To do so, we calculate the mean RI

of Spearman’s correlations between all pairs of rank vectors
rji and rki for each item i, i.e., RI = N−1

∑N
i=1 ρ(r

1
i , r

2
i ),

where N is the number of annotation items. RI acts as a
measure of observed agreement, therefore we now need to
quantify the agreement by chance. For this purpose we de-
fine U as the set comprising all the annotations and compute
the Spearman’s correlation average between all the annota-
tion pairs in U × U as follows:

RT =
1

|U |2
∑

(Ai,Aj)∈U×U

ρ(ri, rj)

whereAi andAj are two annotations inU , ri and rj are their
corresponding rank vectors and ρ(ri, rj) is their Spearman
correlation. Finally, Kraemer’s κ is calculated as the ratio of
the difference between observed agreement (RI ) and chance
agreement (RT ), and the difference between perfect agree-
ment and chance agreement: κ = (RI − RT )(1 − RT )

−1.
To interpret κ values we followed Landis and Koch (1977),
that define the (0.4, 0.6] interval as moderate agreement,
(0.6, 0.8] as substantial agreement and (0.8, 1.0) as almost
perfect agreement. In computational linguistics, there is a
consensus that puts the cutoff above which the annotations
are considered reliable at 0.67 (Di Eugenio and Glass 2004).

Results In Table 1 (first row) we report the Kraemer’s κ
coefficient attained with CSI, WordNet Domains (WND),
SuperSenses and WordNet. As one can see, when the anno-
tations are carried out with CSI, the annotators tend to agree
more than when using other coarse-grained or fine-grained

1We recall from Section 3 that CSI has 45 labels, i.e., |L| = 45.

Measure CSI WND SuperSenses WordNet

IAA 0.81 0.74 0.69 0.51

Descriptiveness 2.23 1.80 2.04 -

Table 1: Kraemer’s κ agreement (first row); average descrip-
tiveness for coarse inventories’ labels (second row).

Sentence The street that is full now of traffic and parked cars drowsed
on an August afternoon in the shade of the curbside trees,
and silence was a weight [...].

Word CSI SuperSenses WND

cars TRANSPORT&TRAVEL N.ARTIFACT TOURISM
shade PHYSICS&ASTRONOMY N.STATE FACTOTUM
silence MUSIC, SOUND&DANCING N.ATTRIBUTE ACOUSTICS

Table 2: An example of how target words from SemCor are
annotated in CSI, SuperSenses and WordNet Domains.

sense inventories. Indeed, the agreement achieved when us-
ing CSI falls in the almost perfect part of the spectrum of κ
values according to the literature (Landis and Koch 1977),
while, when using SuperSenses and WordNet Domains in-
ventories, the agreement has to be considered substantially
reliable. As expected, instead, due to their fine granularity,
WordNet senses allow only a moderate agreement, hence
confirming the results reported by Palmer, Dang, and Fell-
baum (2007). These outcomes show that CSI labels provide
useful semantic information that make them easier to use
than the labels of the other sense inventories, hence simpli-
fying the task of annotating large amounts of data.

4.2 Descriptiveness
In this Section we assess the extent to which CSI and the
other coarse-grained inventories provide labels that are easy
to understand for humans. Specifically, we are interested in
studying the degree of both pertinence and informativeness
that characterise each inventory when using it to tag a text.
To this end, we designed an annotation task for 150 words in
which, given a target word in a sentence from SemCor and
its gold label according to each of the coarse inventories, the
three annotators had to rank the labels in increasing order
of descriptiveness for the given target word. For example, as
shown in Table 2, we presented the annotators with the four
target words street, cars, shade and silence, together with
their corresponding sentence “the street that is full [ . . . ]”,
and asked them to rank the three labels provided for each
word by CSI, SuperSenses and WordNet Domains. As an
annotation for a given target word, the linguists were asked
to provide a score ranking ranging from 1 for the labels that
were less descriptive to 3 for those that were the most de-
scriptive (ties were allowed).

Measures To evaluate the descriptiveness of each inven-
tory under comparison, we calculated the average rank of
the labels across all the 150 annotations. Formally,

descriptiveness(I) =
1

|N ||J |
∑
j∈J

∑
(t,s)∈N

rankj(l
(t,s)
I )



Coverage SC instances SC synsets WN synsets
total % total % total %

CSI 198K 88.0 16K 61.7 83K 70.4
SuperSenses 226K 100.0 26K 100.0 118K 100.0
WND 163K 72.1 18K 69.5 93K 78.7
Intersection 153K 67.5 14K 54.0 79K 67.1

Table 3: Coverage of SemCor (SC) and WordNet (WN) by
class-based inventories.

where J is the set of annotators, l(t,s)I is the label with which
the target word t in the sentence s is tagged according to
inventory I , rankj(x) is the rank given by annotator j to x
and N is the set of annotations to be carried out.

Results We now report the scores attained in the descrip-
tiveness task, computed over the responses provided by the
three annotators. As can be seen in the second row of Ta-
ble 1, CSI is the inventory with the highest scores, prov-
ing on average to be the one with the most descriptive la-
bels, while those of WordNet Domains and SuperSenses are
ranked lower, meaning that they do not offer an adequate de-
gree of characterization. In fact, considering the example in
Table 2, the labels provided by both SuperSenses and WND
are either inappropriate, i.e., the WND TOURISM label as-
sociated with car, or too general and hence not informative,
i.e., the FACTOTUM label of WND for shade and the Super-
Senses label ATTRIBUTE for silence. CSI, instead, provides a
more precise and detailed information on each word in bold
in the example. In summary, not only did CSI prove to be
the inventory with the highest ease of use compared to its
competitors (see Section 4.1), but it also exhibited a higher
degree of descriptiveness in its labels, which can increase
the readability of a text, i.e., making it easier for humans to
understand it. It is reasonable to expect, in fact, that very de-
scriptive labels, such as those provided in CSI, might also
be useful on their own, e.g., to improve the reading compre-
hension of a language learner.

4.3 All-Words Word Sense Disambiguation
In this Section we compare CSI with the aforementioned
sense inventories (see the beginning of Section 4), by using
them as labels for a WSD system.

WSD Models To evaluate the performances of our inven-
tory across different learning models, we implemented two
neural WSD systems. The first model was similar to that
described in Vial, Lecouteux, and Schwab (2019), featur-
ing two bidirectional LSTM layers, that encode the context
of each token, and an attention mechanism. The two vec-
tors (the attention and LSTM outputs) are concatenated and
fed into a dense layer for classification. As input features,
we tried two different pre-trained contextual embeddings,
i.e., ELMo (Peters et al. 2018) and BERT base (Devlin et
al. 2019). The second model, instead, had a simpler archi-
tecture in which BERT large contextualized embeddings are
fed directly to a fully-connected layer for classification.

Data For training, developing and testing we used the
WSD evaluation framework made available by Raganato,
Camacho-Collados, and Navigli (2017). It includes SemCor,
which we used as training set, and the 5 standard all-words
WSD benchmarks for English, i.e., Senseval-2 (Palmer et
al. 2001), Senseval-3 (Snyder and Palmer 2004), SemEval-
07 (Pradhan et al. 2007), SemEval-13 (Navigli, Jurgens, and
Vannella 2013), SemEval-15 (Moro and Navigli 2015). We
will use ALL to refer to the concatenation of all the forego-
ing benchmark datasets except SemEval-07, which, follow-
ing Raganato, Camacho-Collados, and Navigli (2017), we
used as development set.

In order to evaluate each sense inventory we replaced the
WordNet sense keys appearing in the training set and in all
test sets with their coarse labels in the sense inventory un-
der assessment. Whenever a sense key in the training set oc-
curred that was associated with multiple labels, we replaced
it with a random tag taken from among the mapped ones.
For the evaluation, we considered the predicted label to be
correct if it was included in the set of all the possible labels
for the instance. Finally, to set a level playing field among all
the sense inventories under comparison, we considered only
the training and testing instances that were in common, i.e.,
all those tagged with a synset that was covered by each of
the inventories. Therefore, to consider the intersection, we
restricted the training data to 153K out of 226K instances,
as shown in the last row of Table 3, where we also report
the coverage of each inventory with respect to the synsets of
WordNet and to those that appear in SemCor.

Evaluation Measure As evaluation measure for perfor-
mance we used F1. However, we note that each inventory
makes the task either more or less difficult as there are sig-
nificant differences in the number of labels and in the way
the synsets are grouped. Therefore, to estimate the difficulty
of the disambiguation task according to the sense inventory,
we computed the perplexity of a random guessing model as
the inverse of the probability of choosing the correct answer,
by randomly sampling one label from those possible for the
given item: PPL = 1

m

∑m
i=1

Lli

Gi
, where Lli is the number

of all the labels that are associated with the lemma li in a
given sense inventory, Gi is the number of correct answers
for the instance i and m is the number of instances in the
dataset. Since the difficulty of the task (PPL) and the perfor-
mance of the model (F1) are inversely correlated, we com-
pute a Geometric Trade-Off (GTO) measure, which is the
best choice when averaging values with different magnitude
(see, e.g., Komninos and Manandhar (2016)).

Hyperparameters Every model variant freezes the em-
bedding layer’s weights during training, and the input to the
network is fed in batches of 64. In the first model, the out-
put of the two Bi-LSTMs layers is set to 512. When using
ELMo, the sentences longer than 30 words are truncated. As
optimizer we used Adam (Kingma and Ba 2015) with learn-
ing rate 10−3 and 10−4 for ELMo and BERT, respectively.



F1 PPL GTO

Inventory SE-2 SE-3 SE-07 SE-13 SE-15 ALL SE-2 SE-3 SE-07 SE-13 SE-15 ALL SE-2 SE-3 SE-07 SE-13 SE-15 ALL

ELMo
+
LSTM

CSI 83.5 81.7 79.9 81.9 77.9 81.7 2.62 3.13 3.71 2.28 2.93 2.70 1.48 1.6 1.72 1.37 1.51 1.49
WND 89.8 86.5 91.7 80.6 85.0 85.5 2.00 2.33 2.25 2.12 2.01 2.13 1.34 1.42 1.44 1.31 1.31 1.35
SuS 82.3 78.9 81.5 79.8 80.2 80.3 2.25 2.69 2.98 2.15 2.26 2.34 1.36 1.46 1.56 1.31 1.34 1.37

BERT
+
LSTM

CSI 84.8 83.4 75.7 80.3 76.8 81.9 2.62 3.13 3.71 2.28 2.93 2.70 1.49 1.62 1.67 1.35 1.50 1.49
WND 87.4 85.3 89.1 82.1 81.0 84.4 2.00 2.33 2.25 2.12 2.01 2.13 1.32 1.41 1.42 1.32 1.28 1.34
SuS 81.5 79.1 79.4 79.0 79.6 79.8 2.25 2.69 2.98 2.15 2.26 2.34 1.36 1.46 1.54 1.30 1.34 1.37

BERT
+
Dense

CSI 86.0 84.5 75.5 83.3 79.3 83.8 2.62 3.13 3.71 2.28 2.93 2.70 1.50 1.63 1.67 1.38 1.53 1.51
WND 91.2 87.9 89.4 83.7 84.7 87.2 2.00 2.33 2.25 2.12 2.01 2.13 1.35 1.43 1.42 1.33 1.30 1.36
SuS 83.2 81.4 79.9 80.5 82.3 81.8 2.25 2.69 2.98 2.15 2.26 2.34 1.37 1.48 1.54 1.32 1.36 1.38

Table 4: Comparison of CSI against WordNet Domains (WND) and SuperSenses (SuS) on all-words WSD tasks from past
Senseval and SemEval competitions.

CSI vs. BabelDomains

Model F1 Perplexity GTO

CSI BD CSI BD CSI BD

ELMo + Bi-LSTM 86.9 86.9 1.92 1.95 1.29 1.30
BERT + Bi-LSTM 89.4 87.1 1.92 1.95 1.31 1.30

BERT + Dense 91.1 89.1 1.92 1.95 1.32 1.32

Table 5: Comparison of CSI against BabelDomains (BD), on
all-words WSD. Results are shown for the ALL dataset.

Results We now report the results of the comparison be-
tween CSI and its competitors. For each sense inventory
we computed its performance in terms of F1, the perplex-
ity of random guessing with the considered inventory and
their geometric mean. We remark that a higher perplexity
indicates a higher uncertainty of random guessing, i.e., the
sense inventory associates on average a higher number of
possible labels with a given lemma, thus making the disam-
biguation task harder. Since CSI extends BabelDomains, we
first report their comparison in Table 5. As can be seen, the
two inventories reach a GTO score that is almost the same
across the WSD models. However, BabelDomains is inher-
ently limited for WSD tasks as it only covers nouns, while
CSI covers all the open-class parts of speech without los-
ing anything in terms of performance compared to Babel-
Domains. Since CSI proved to be on a par with BabelDo-
mains while, at the same time, having a wider coverage of
POS tags, in what follows we only report the results for CSI.
We now move to compare our inventory with the other class-
based approaches, i.e., WordNet Domains and SuperSenses.
As shown in Table 4, CSI consistently attains better GTO
scores than the other inventories, proving its better balance
between label granularity and expressiveness, regardless of
the underlying neural model. More in detail, we note that,
while WordNet Domains achieves higher F1 scores across
datasets, except for SemEval-13 with the ELMo + Bi-LSTM
model, its perplexity is always lower, meaning that the dis-
ambiguation task becomes easier due to the lower expres-
siveness of the inventory. Indeed, more than 18% of the
WordNet synsets are mapped to the semantically-empty la-
bel of WND, i.e., FACTOTUM. CSI, in contrast, resorts to
GENERAL for less than 1% of the annotated synsets.

Differently from WordNet Domains, SuperSenses
achieves F1 scores that are lower than CSI, except for
SemEval-07 and SemEval-15. Moreover, it shows a lower

perplexity overall, proving to be a less expressive inventory.
In fact, it provides only 4 possible classes in total for
adjectives and adverbs, thus making the task of disam-
biguation undemanding on these POS tags. Since BERT +
Dense attained overall better results than ELMo and BERT
+ Bi-LSTM, in what follows we report its performance
only. Finally, to better analyse the impact that the two
semantically-empty labels of CSI and WordNet Domains
have on the results, we compared the precision, recall and F1
obtained when excluding GENERAL (CSI) and FACTOTUM
(WND) from the valid answers. As shown in Table 7, CSI
obtains a higher precision and recall, thus confirming our
hunch that FACTOTUM highly impacts WordNet Domains
performance. In fact, most testing instances were tagged
with FACTOTUM by the model and when it was excluded
from the valid answers, this made the recall drop.

We note that, when taking full advantage of the CSI la-
bels and let BERT + Dense train on all SemCor instances
covered by CSI, we report an 85.9 F1 score on ALL. This,
together with the results of the qualitative analysis (Section
4.2), highlights that CSI is the most viable candidate to re-
place or complement fine-grained inventories for WSD.

4.4 Zero- and Few-Shot Learning
To investigate the improvement that CSI can bring to the dis-
ambiguation of unseen or under-represented words, we per-
formed a zero- and few-shot learning experiment. We ran-
domly sampled a set of words, and trained the WSD model
removing the annotations for those words. Then, we tested
the ability of the class-based sense inventories to leverage
labels from other words when zero or only few annotated
examples for a word are provided.

Experimental Setup We define L as the set of all lemmas
appearing in SemCor and the evaluation datasets. From L
we sample a set Lout of 100 words, that we partition in two
disjoint subsets, Ltest and Ldev , of size 70 and 30 respec-
tively. We define DW as the subset of dataset D which con-
tains only instances for the lemmas in a setW . For example,
SemCorL is the unmodified training corpus, and Senseval-
2Ldev is the dataset containing all the instances in Senseval-
2 for lemmas in Ldev . Starting from SemCor, we build the
training set SemCorL\Lout , i.e., containing as instances all
lemmas not in Lout, which we used for training the BERT
+ Dense WSD model with the hyperparameters defined in
Section 4.3; we will refer to this model as M0. To perform



Inventory F1 PPL GTO MFS
T0 T3 T5 T0 T3 T5 T0 T3 T5

CSI 69.0 ± 2× 10−4 68.6 ± 8× 10−5 77.8 ± 7× 10−4 4.88 1.54 1.85 1.84 1.03 1.20 72.1
WND 64.3 ± 1× 10−3 75.1 ± 2× 10−4 76.2 ± 3× 10−5 4.41 1.39 1.57 1.68 1.02 1.09 74.9
SuS 62.6 ± 3× 10−4 67.8 ± 1× 10−3 73.0 ± 2× 10−3 4.07 1.51 1.73 1.60 1.01 1.12 68.7

Table 6: Comparison of CSI against WordNet Domains (WND) and SuperSenses (SuS) on zero- and few-shot settings.

CSI vs. WordNetDomains

Dataset Precision Recall F1

CSI WND CSI WND CSI WND

Senseval-2 96.2 95.5 86.8 85.3 91.2 90.1
Senseval-3 97.0 91.2 85.0 78.6 90.6 84.4
SemEval-07 96.8 87.2 73.4 65.4 83.5 74.7
SemEval-13 96.7 93.9 84.0 79.0 89.9 85.8
SemEval-15 96.8 96.2 75.8 66.7 85.0 78.8

ALL 96.6 94.0 84.0 79.1 89.9 85.9

Table 7: Comparison of CSI against WordNet Domains
(WND) when discarding semantically-empty predictions.

the tuning and evaluation of the models described below, we
use Senseval-2Ldev as dev set and ALLLtest as test set.

Zero- and Few-Shot Setting We evaluated the perfor-
mance ofM0 on ALLLtest without any further training. Note
that the lemmas in Ltest had never been seen tagged during
training, so we called this the zero-shot setting. To evalu-
ate the inventory and the model on the few-shot learning
task, instead, we built the training datasets T3, T5 by ran-
domly sampling 3, 5 examples, respectively, for each lemma
in Ltest, such that T3 ⊂ T5. For each Ti we trained a sepa-
rate model Mi that we tuned on Senseval-2Ldev as done for
M0. Finally, we initialized the weights from M0 and back-
propagated the gradients only through the dense layer.

Evaluation Measure The experiment aims at proving
that, even if the training set contains only a few tagged ex-
amples for a word, the model can still benefit from the class-
based nature of CSI in classifying the under-represented
words. Therefore, we measure the performance of the mod-
els in terms of both F1 and GTO. Each inventory is com-
pared against its most frequent sense (MFS) baseline, which,
given a target word w, is defined as the class that is most fre-
quently used to tag w in SemCor. Since we sample the test
lemmas, Ltest, at random, we report the average of the re-
sults obtained on three random word samples L1

test, L
2
test

and L3
test on their respective instances in the ALL dataset,

i.e., ALLL1
test , ALLL2

test and ALLL3
test .

Results In Table 6 we compare CSI, WordNet Domains
and SuperSenses with their MFS baselines. While all the
sense inventories manage to beat their MFS, CSI is the one
that surpasses it with the greatest gap, i.e., 5.7 F1 points
compared to the 1.3 and 4.3 for WordNet Domains and Su-
perSenses, respectively. This proves that CSI allows the net-
work to better exploit the semantic information carried by

the words within the training set, hence enabling a model to
generalise well over under-represented words and mitigating
the need for large amounts of annotated data for WSD. This
is further confirmed when considering the GTO scores in
Table 6, where CSI reaches the best performance across the
board. Therefore, not only does CSI lead the WSD model to
attain higher results than its competitors as regards the MFS,
but it also provides - in this setting as well - a better balance
between polysemy and performances of the model.

5 Conclusion
In this paper we presented CSI, a new sense inventory for
coarse-grained WSD. Our labels proved to be of higher qual-
ity than those of alternative inventories, as they exhibited a
descriptiveness that was not matched by any of the other in-
ventories, hence making the text annotated with CSI labels
of easier interpretation for humans. Moreover, we showed
that CSI enabled annotators to attain a higher agreement
compared to other fine- and coarse-grained inventories that
are employed for the task. On the quantitative side, we
showed that CSI allows a supervised WSD model to achieve
the most competitive trade-off between performance and ex-
pressiveness, and to attain almost 86 F1 points overall when
not restricting the set of training instances to those also cov-
ered by other inventories as well. In addition, we showed
that, when using CSI labels, a supervised model can better
generalise over rare words, i.e., those that never or seldom
appear in the training data. In fact, in the few-shot learn-
ing task, our inventory was the one that led the underly-
ing model to achieve the highest increment over the MFS
when just five training examples were provided for the tested
words. Foreseeing the potential benefits that CSI can bring
to coarse-grained WSD, we release to the community the
full inventory, covering more than 120K unique words in
the English vocabulary, together with its mapping to Word-
Net synsets and the code to reproduce the experiments at
http://lcl.uniroma1.it/csi.
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